Chiplets keep the scaling of integrated circuits (ICs) rolling
As data grows at an accelerating pace, more compute power and bandwidth are required to process this data, driving the need for larger and more complex system on chips (SoCs). This is particularly true at a time when our old friend Moore’s Law has lost a step.
However, as the complexity of SOCs increases, so do the costs to manufacture in leading-edge FinFET geometries. As misery loves company, achieving first-time-right silicon has become more difficult as well. Additionally, there are greater challenges for power scaling and yield. In other words, everything gets harder.
Chip disaggregation, or chiplets, offers an alternative to the traditional monolithic SoC scaling approach. Aggregating multiple chiplets to perform the function of a single monolithic IC de-risks the overall system by reducing complexity and increasing yields.
For applications like artificial intelligence (AI), where there is a “Cambrian explosion” in the number of SoCs and architectural approaches under development, chiplets are an ideal solution. Greater experimentation, and faster time to market are possible when a designer can revise a single chiplet as opposed to having to re-spin an entire SoC.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Ultra Ethernet Consortium Set to Enable Scaling of Networking Interconnects for AI and HPC
- From DIY To Advanced NoC Solutions: The Future Of MCU Design
- Guarding against the threat of clock attacks with analog IP
- Arm Compute Platform at the Heart of Malaysia’s Silicon Vision
Latest Blogs
- Rivian’s autonomy breakthrough built with Arm: the compute foundation for the rise of physical AI
- AV1 Image File Format Specification Gets an Upgrade with AVIF v1.2.0
- Industry’s First End-to-End eUSB2V2 Demo for Edge AI and AI PCs at CES
- Integrating Post-Quantum Cryptography (PQC) on Arty-Z7
- UA Link PCS customizations from 800GBASE-R Ethernet PCS Clause 172