Challenges in chip integration
Chip integration is where all of the pieces for a new chip come together. In an ideal world, all of those pieces get done on time, they all go in one batch to the chip group responsible for the integration, who combines them all together in perfect harmony, pushes the button, and voilà!, off the full chip goes to the foundry, where it manufactures perfectly and performs exactly as it should.
Of course, the real world is more complicated, and that “waterfall” type of project is giving way more and more often to more “agile” or “concurrent” projects, where different blocks are on different development schedules and encounter different production issues, so the chip assembly is repeated over and over as pieces are completed or updated. This process requires compiling inputs from multiple groups, feeding back information on the results of the integration, and then managing updates and adjustments from each of those input streams, all while managing and controlling the overall delivery schedule. In addition to the obvious challenges of managing multiple datastreams, significant technical challenges must also be satisfied to ensure the integrity of those data, as well as maximize overall process efficiency.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- IP integration: Is it the real system-level design?
- Synopsys Integration Challenges with SpringSoft Acquisition
- Charting a Productive New Course for AI in Chip Design
- AI Is Driving a New Frontier in Chip Design
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power