What Does the Future Hold for AI in Chip Design?
It’s hard to imagine a time when AI wasn’t a part of the silicon chip design flow. Since intelligence has now been integrated into design, verification, test, and other key phases, engineers are experiencing productivity advantages along with outcomes that humans alone wouldn’t be able to accomplish under typical project timelines.
How did we get here? And where do we go from here?
These were just a couple of the questions pondered by a panel of Synopsys AI architects at this year’s SNUG Silicon Valley 2023 conference in Santa Clara. The panel, “Rise of AI for Design—Journey Thus Far and the Road Ahead,” brought together experts from different areas of the business to share overviews of AI enhancements in their areas so far and thoughts on what might be coming up next. Geetha Rangarajan, senior manager from the Synopsys AI Strategy and System team and AI track lead at SNUG Silicon Valley, shared that the main objective for the panel was to discuss how AI can help us rethink ‘hard’ problems in multiple areas of system design and inspire attendees to think creatively about possibilities for leveraging AI-driven solutions. Read on for highlights of the discussion.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- Maximizing the Usability of Your Chip Development: Design with Flexibility for the Future
- UEC-LLR: The Future of Loss Recovery in Ethernet for AI and HPC
- The Future of Technology: Generative AI in China
- 2024 Set The Stage For NoC Interconnect Innovations In SoC Design
Latest Blogs
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring