CEO Interview: Charlie Janac of Arteris IP
Charlie Janac is president and CEO of Arteris IP where he is responsible for growing and establishing a strong global presence for the company that is pioneering the concept of NoC technology. Charlie’s career spans over 20 years and multiple industries including electronic design automation, semiconductor capital equipment, nanotechnology, industrial polymers and venture capital.
In the first decade of his career, he held various marketing and sales positions at Cadence Design Systems (NYSE: CDN) where he helped build it into one of the ten largest software companies in the world. He joined HLD Systems as president, shifting the company’s focus from consulting services to IC floor planning software and building the management, distribution and customer support organizations. He then formed Smart Machines, manufacturer of semiconductor automation equipment and sold it to Brooks Automation (NASDAQ: BRKS). After a year as Entrepreneur-in-Residence at Infinity Capital, a leading early-stage Venture Capital firm, where he consulted on Information Technology investment opportunities, he joined Nanomix as president and CEO helping build this start-up nano-technology company. Mr. Janac holds a B.S. and M.S. degree in Organic Chemistry from Tufts University and an M.B.A from Stanford Graduate School of Business.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
- UALink PCS IP Core
- Verification IP for UALink
Related Blogs
- CEO Interview: Charlie Janac of Arteris
- CEO Interview: Dr. Nikos Zervas of CAST
- CEO Interview with Cyril Sagonero of Keysom
- CEO Interview: Xerxes Wania of Sidense
Latest Blogs
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design