ARM's Cortex-A7 and A15: A Performance Versus Power Consumption Optimization Scheme
Last month's edition of InsideDSP included the article "NVIDIA and Qualcomm ARM Up Against Competitors," which discussed (among other things) NVIDIA's upcoming five-core Kal-El (i.e. Tegra 3) SoC. Tegra 3 combines four ARM Cortex-A9 cores built out of conventional 40 nm transistors and a fifth Cortex-A9 constructed from low-leakage (albeit switching speed-limited) circuits. The fifth core will operate stand-alone in low-performance usage scenarios (including, ironically, during high definition video playback sessions, thanks to the chip's dedicated-function hardware resources).
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Altera's Next-Generation FPGAs: Advanced Process Lithographies Lead to Performance, Power Consumption Efficiencies
- ARM vs Intel...Performance? Power? OS support? Or ubiquity?
- Technical Comparison: USB Power Delivery r1.0 vs r2.0
- Next-Gen Cadence Tensilica Vision Processor Core Claims Big Performance, Energy Consumption Gains
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production