ARM's Cortex-A7 and A15: A Performance Versus Power Consumption Optimization Scheme
Last month's edition of InsideDSP included the article "NVIDIA and Qualcomm ARM Up Against Competitors," which discussed (among other things) NVIDIA's upcoming five-core Kal-El (i.e. Tegra 3) SoC. Tegra 3 combines four ARM Cortex-A9 cores built out of conventional 40 nm transistors and a fifth Cortex-A9 constructed from low-leakage (albeit switching speed-limited) circuits. The fifth core will operate stand-alone in low-performance usage scenarios (including, ironically, during high definition video playback sessions, thanks to the chip's dedicated-function hardware resources).
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Blogs
- Altera's Next-Generation FPGAs: Advanced Process Lithographies Lead to Performance, Power Consumption Efficiencies
- ARM vs Intel...Performance? Power? OS support? Or ubiquity?
- Technical Comparison: USB Power Delivery r1.0 vs r2.0
- Next-Gen Cadence Tensilica Vision Processor Core Claims Big Performance, Energy Consumption Gains
Latest Blogs
- A Low-Leakage Digital Foundation for SkyWater 90nm SoCs: Introducing Certus’ Standard Cell Library
- FPGAs vs. eFPGAs: Understanding the Key Differences
- UCIe D2D Adapter Explained: Architecture, Flit Mapping, Reliability, and Protocol Multiplexing
- RT-Europa: The Foundation for RISC-V Automotive Real-Time Computing
- Arm Flexible Access broadens its scope to help more companies build silicon faster