ARM's Cortex-A7 and A15: A Performance Versus Power Consumption Optimization Scheme
Last month's edition of InsideDSP included the article "NVIDIA and Qualcomm ARM Up Against Competitors," which discussed (among other things) NVIDIA's upcoming five-core Kal-El (i.e. Tegra 3) SoC. Tegra 3 combines four ARM Cortex-A9 cores built out of conventional 40 nm transistors and a fifth Cortex-A9 constructed from low-leakage (albeit switching speed-limited) circuits. The fifth core will operate stand-alone in low-performance usage scenarios (including, ironically, during high definition video playback sessions, thanks to the chip's dedicated-function hardware resources).
To read the full article, click here
Related Semiconductor IP
- Network-on-Chip (NoC)
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- UCIe PHY (Die-to-Die) IP
- UCIe-S 64GT/s PHY IP
- UA Link DL IP core
Related Blogs
- Altera's Next-Generation FPGAs: Advanced Process Lithographies Lead to Performance, Power Consumption Efficiencies
- ARM vs Intel...Performance? Power? OS support? Or ubiquity?
- Technical Comparison: USB Power Delivery r1.0 vs r2.0
- Next-Gen Cadence Tensilica Vision Processor Core Claims Big Performance, Energy Consumption Gains
Latest Blogs
- Design specification: The cornerstone of an ASIC collaboration
- The importance of ADCs in low-power electrocardiography ASICs
- VESA Adaptive-Sync V2 Operation in DisplayPort VIP
- Design, Verification, and Software Development Decisions Require a Single Source of Truth
- CAVP-Validated Post-Quantum Cryptography