ARM's Cortex-A15: A big step up for the ARM processor architecture. Targeting 32nm and 28nm technology nodes
Earlier this week Cadence announced that it worked with ARM to develop an implementation methodology for the recently announced, high-end ARM Cortex-A15 processor core, code-named Eagle. The ARM Cortex-A15 processor core has an expanded 40-bit (1Tbyte) memory address space (called Large Physical Address Extensions, LPAE), parity and ECC built into the processor’s cache controllers for both the L1 (32Kbytes of instruction and 32Kbytes of data per processor core) and L2 (maximum size = 4 Mbytes, shared among as many as four processor cores) caches, an AMBA 4 AXI Coherency Extensions (ACE) interface port, and hardware support for multicore designs and virtualization. According to the specification page, the ARM Cortex-A15 processor supports coherent multiprocessing using as many as four closely connected CPUs and supports multiple SMP (symmetric multiprocessing) clusters connected via the AMBA 4 interconnect fabric. The processor core’s virtualization capabilities involve “hardware support for data management and arbitration, whereby multiple software environments and their applications are able to simultaneously access the system capabilities” according to the online specification page. These are truly the specs of an apps-driven processor core.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Moore's Law and 28nm Yield
- TSMC 28nm Design Advisory
- TSMC 28nm moves toward reality, with its retinue
- Altera's intros 28nm Stratix V FPGA family
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA