Cooking Up Better Performance for Arm-Based SoCs
With increasing complexity, ascertaining performance in Arm-based SoCs design has become challenging, as it involves system-wide protocols connecting multiple IP in collaboration to deliver the expected performance. Verification teams must do the performance verification at the system level to ensure data integrity and avoid any bandwidth throttling or cache coherency issues at a later stage. However, it is difficult for developers to evaluate this combination's performance running the anticipated mix of workloads. Integrating more functionality and multicores suits the customer's expectations and market demands, but it introduces tremendous challenges for SoC verification teams.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Altera's new ARM-based SoC FPGAs
- Integration and Verification of PCIe Gen4 Root Complex IP into an Arm-Based Server SoC Application
- Defacto SoC Compiler performance on AWS Graviton3
- Raspberry Pi Pico 2: Arm-based Development Board Delivers Higher, More Secure Performance for Commercial Applications
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power