Cooking Up Better Performance for Arm-Based SoCs
With increasing complexity, ascertaining performance in Arm-based SoCs design has become challenging, as it involves system-wide protocols connecting multiple IP in collaboration to deliver the expected performance. Verification teams must do the performance verification at the system level to ensure data integrity and avoid any bandwidth throttling or cache coherency issues at a later stage. However, it is difficult for developers to evaluate this combination's performance running the anticipated mix of workloads. Integrating more functionality and multicores suits the customer's expectations and market demands, but it introduces tremendous challenges for SoC verification teams.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related Blogs
- Altera's new ARM-based SoC FPGAs
- Integration and Verification of PCIe Gen4 Root Complex IP into an Arm-Based Server SoC Application
- Defacto SoC Compiler performance on AWS Graviton3
- Raspberry Pi Pico 2: Arm-based Development Board Delivers Higher, More Secure Performance for Commercial Applications
Latest Blogs
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design