4 Critical Characteristics for Automotive SoCs
Thanks to the intelligence inside, your car can do a lot more on its own than ever before. When your vehicle senses it is getting too close to the car in front, it can apply the brakes. Or if your car recognizes it’s about to cross into another lane, it can alert you or center itself. And, while they’re not yet commercially available, self-driving cars are being tested and operated on our roadways.
Today’s connected vehicles are digital platforms. At the high end, it’s not uncommon to find upwards of 150 million lines of software code distributed among 150 or more electronic control units (ECUs), as well as in sensors, cameras, radar, and LiDAR devices. Software provides a lot of the vehicle differentiation, working in tandem with the hardware to turn concepts like automated braking, lane departure warnings, and self-parking into viable features.
With technology driving so many of the capabilities in modern vehicles, it’s no wonder that automotive SoCs are a key point of focus for carmakers. Some automotive OEMs are designing their own chips, and many others are investigating the possibilities. When it comes to ensuring the dependability of these chips, four key characteristics are needed: quality, reliability, functional safety, and security. Read on to learn more about the requirements to address each of these areas in your automotive SoC designs.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Design IP for Automotive SoCs: Trends and Solutions
- Synopsys 10BaseT1-S VIP for your Automotive SoCs
- Arm and Arteris Drive Innovation in Automotive SoCs
- Cooking Up Better Performance for Arm-Based SoCs
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production