Opinion: The yin and yang of designing big chips
In thinking about this viewpoint, it occurred to me that a good place to start is with the EDA industry itself –– what characterizes it, for example? It strikes me that in EDA we are quite different as an industry compared to, say, the medical industry, especially in terms of speed of innovation. If a person in academia dreams up an EDA idea, it can be implemented, tested to ensure that it works, and put on the market reasonably quickly.
However, the proof needed to demonstrate that an EDA innovation works reliably is somewhat less rigorous than the testing and approvals process that medicine and medical technology needs to go through –– and with good reason. This is chiefly because the medical industry deals with people, which make the consequences of something going wrong far more serious.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- Designing low-power multiprocessor chips
- Advantages and Challenges of Designing with Multiple Inferencing Chips
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics