What's Missing from Design for Testability?
Louis Y. Ungar, President, Advanced Test Engineering (A.T.E.) Solutions
EETimes (12/14/2015 06:00 AM EST)
For years, engineers have neglected the "design" part of design-for-test. DFT shouldn't be an afterthought and test engineers can take on some of the task.
Design for Testability (DFT) is comprised of two very important terms. "Testability" is a condition of a circuit that makes it possible, easy, and cost-effective to test and diagnose the circuit (unit) under test (UUT). There is a wide acceptance that such a characteristic should be part of electronics ICs, boards and systems, too. After all, without DFT, faults can go undetected, making them difficult to repair. For far too long, the "Design" part of DFT that has been neglected.
Clearly, the features needed for implementing DFT, such as controllability, observability and diagnosability must be incorporated into a design. DFT shouldn't be an afterthought or a redesign activity. Designers must purposely create testable circuits. DFT is, however, more problematic than it appears. Let's examine the hurdles and see what we can do to improve design activities for testability.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Analog design quality closure: What’s missing from current flows?
- The SoC design: What’s next for NoCs?
- Testable SoCs : Design for testability: separating the myths from reality
- Electronic musical instruments design: what's inside counts
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events