What's Missing from Design for Testability?
Louis Y. Ungar, President, Advanced Test Engineering (A.T.E.) Solutions
EETimes (12/14/2015 06:00 AM EST)
For years, engineers have neglected the "design" part of design-for-test. DFT shouldn't be an afterthought and test engineers can take on some of the task.
Design for Testability (DFT) is comprised of two very important terms. "Testability" is a condition of a circuit that makes it possible, easy, and cost-effective to test and diagnose the circuit (unit) under test (UUT). There is a wide acceptance that such a characteristic should be part of electronics ICs, boards and systems, too. After all, without DFT, faults can go undetected, making them difficult to repair. For far too long, the "Design" part of DFT that has been neglected.
Clearly, the features needed for implementing DFT, such as controllability, observability and diagnosability must be incorporated into a design. DFT shouldn't be an afterthought or a redesign activity. Designers must purposely create testable circuits. DFT is, however, more problematic than it appears. Let's examine the hurdles and see what we can do to improve design activities for testability.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Analog design quality closure: What’s missing from current flows?
- The SoC design: What’s next for NoCs?
- Testable SoCs : Design for testability: separating the myths from reality
- From a Lossless (~1.5:1) Compression Algorithm for Llama2 7B Weights to Variable Precision, Variable Range, Compressed Numeric Data Types for CNNs and LLMs
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension