Verifying embedded software functionality: fault localization, metrics and directed testing
Abhik Roychoudhury
EETimes (8/26/2012 3:16 PM EDT)
Editorâs Note: In the third in a four part series Abhik Roychoudhury, author of Embedded Systems and software validation, discusses the pros and cons of metric base fault localization and directed testing for assessing software functionality.
So far, in Part 1 and Part 2 in this series, we have presented the dynamic slicing method, which is fully formal and requires examination of the control/data dependencies in an execution trace.
But, the difficulties in using it include (a) time and space overheads for storing/analyzing program traces and (b) potentially large slice sizes. In the preceding, we examined methods to deal with the second problem - comprehension of large slices.
However, we still have to grapple with the time and space overheads of dynamic slicing. As observed earlier, state-of-the-art dynamic slicing tools employ various tricks such as online compaction of the execution trace and program dependence analysis on the compact trace (without decompressing it).
Nevertheless, the time and space overheads for large real-life programs is still substantial, and the quest for lightweight methods remains. In this part in the series, we will discuss a class of such lightweight methods. In the following we use the terms execution trace and execution run interchangeably. Indeed, the existing literature on software debugging also uses these two terms interchangeably. Before proceeding any further, let us first give an illustrative example.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Verifying embedded software functionality: Why it's necessary
- Design considerations for power sensitive embedded devices
- Designing low-energy embedded systems from silicon to software
- Building more secure embedded software with code coverage analysis
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor