Design considerations for power sensitive embedded devices
Adam Kaiser, Mentor Graphics
EETimes (4/17/2012 10:38 PM EDT)
The importance of power management and optimization in today’s embedded designs has been steadily growing as an increasing number of battery-powered devices continue to perform more complex tasks.
The unrelenting demand for connectivity and new features presents a growing challenge to designers. Yet, very often power optimizations are left to the very end of the project cycle, almost as an afterthought. When setting out to design a power-optimized embedded device, it is important to consider power management from the very inception of the project.
This article discusses design considerations that should be made when beginning a new embedded design. The considerations include choosing the hardware with appropriate capabilities, defining hardware design constraints to allow software to manage power, making the right choice of an operating system and drivers, defining appropriate power usage profiles, choosing measurable power goals, and providing these goals to the software development team to track throughout the development process.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- The evolution of embedded devices: Addressing complex design challenges
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
- Memory solution addressing power and security problems in embedded designs
- Simplify the Internet of Things connectivity of embedded devices
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems