Design considerations for power sensitive embedded devices
Adam Kaiser, Mentor Graphics
EETimes (4/17/2012 10:38 PM EDT)
The importance of power management and optimization in today’s embedded designs has been steadily growing as an increasing number of battery-powered devices continue to perform more complex tasks.
The unrelenting demand for connectivity and new features presents a growing challenge to designers. Yet, very often power optimizations are left to the very end of the project cycle, almost as an afterthought. When setting out to design a power-optimized embedded device, it is important to consider power management from the very inception of the project.
This article discusses design considerations that should be made when beginning a new embedded design. The considerations include choosing the hardware with appropriate capabilities, defining hardware design constraints to allow software to manage power, making the right choice of an operating system and drivers, defining appropriate power usage profiles, choosing measurable power goals, and providing these goals to the software development team to track throughout the development process.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- The evolution of embedded devices: Addressing complex design challenges
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
- Memory solution addressing power and security problems in embedded designs
- Simplify the Internet of Things connectivity of embedded devices
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models