Design considerations for power sensitive embedded devices
Adam Kaiser, Mentor Graphics
EETimes (4/17/2012 10:38 PM EDT)
The importance of power management and optimization in today’s embedded designs has been steadily growing as an increasing number of battery-powered devices continue to perform more complex tasks.
The unrelenting demand for connectivity and new features presents a growing challenge to designers. Yet, very often power optimizations are left to the very end of the project cycle, almost as an afterthought. When setting out to design a power-optimized embedded device, it is important to consider power management from the very inception of the project.
This article discusses design considerations that should be made when beginning a new embedded design. The considerations include choosing the hardware with appropriate capabilities, defining hardware design constraints to allow software to manage power, making the right choice of an operating system and drivers, defining appropriate power usage profiles, choosing measurable power goals, and providing these goals to the software development team to track throughout the development process.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
- Memory solution addressing power and security problems in embedded designs
- Simplify the Internet of Things connectivity of embedded devices
- Power management in embedded software
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor