Do Standardized Embedded IP Transistor Views Exist for SoC IP Integration?
The known roadblocks, power consumption-data management-multiOS-verification, to System-on-Chip development are being lifted by numerous creative solutions. One of these solutions is the availability of IP designs representations from architectural abstraction to transistors. The levels of IP abstraction or different levels of IP abstractions you make available to the system architect, designer, verifier, IP integrator and chip manufacturer will be paramount in the success of the design and verification process and especially from a time-to-market and cost aspect. We will describe how the choice of your system verification environment needs to span over multiple system application environments and especially applications or silicon technology migration where the accurate design representation of a crucial IP block has its golden representation as a transistor netlist which is the only design representation that allows fast technology migration for special silicon processes like low power CMOS, analog or memories. We will describe the abstraction techniques used to create the RTL view of the optimised transistor netlist to new silicon process in order to be used on the verification platform.
The last part of the paper will describe step by step the process from the SoC specifications' first mapping on the system verification environment of a 3G-radio sub-system, the transistor level optimisation of a specific memory controller block and final mapping and system verification with the new RTL view.
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Are we too Hard for Agile?
- Supporting hardware assisted verification with synthesizable assertions
- Digital Signal Processing (DSP) Verification
- Verification care abouts for SoC internal channel characterization using an ADC
Latest White Papers
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance