Using domain-specific modeling languages for medical device development
Verislav Djukić, Djukic Software GmbH; Aleksandar Popović, University of Montenegro; and Juha-Pekka Tolvanen, MetaCase
embedded.com (March 08, 2014)
Domain-Specific Languages have become a common tool in the toolbox of software developers. There is a natural reason for this: they are more expressive and therefore tackle complexity better, making software development easier and more convenient. They can also raise the level of abstraction from raw implementation code to the actual problem domain. Designs and specifications expressed with the higher-level problem domain concepts make specifications easier to create, check and communicate with. Most importantly, together with domain-specific generators, they can automate the creation of production code.
When companies start using domain-specific languages, they often want to utilize existing languages and specifications along with related components and legacy code. Through a concrete example from a medical domain, we describe how existing languages for Programmable Logic Controllers (PLCs), like IEC 61131-3 structured text or function block diagrams, can be extended with domain-specific constructs.
We also demonstrate native code building for the run-time system (RTS), targeting both Intel and ARM processors, and managing HMI components for monitoring measurement and control processes. The high-level languages are not only used for design and code generation, but also when debugging and profiling, or even incremental specification and execution “on the fly”. We conclude by describing our experiences of creating the domain-specific language and of using it in production.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Functional Transaction Level Modeling simplifies heterogeneous multiprocessor software development
- Performance Evaluation of Inter-Processor Communication Mechanisms on the Multi-Core Processors using a Reconfigurable Device
- Case study: Using Spartan to support green energy development
- Using SoCs for portable medical equipment
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions