Using model-driven development to reduce system software security vulnerabilities
Using model-driven development to reduce system software security vulnerabilities
Guy Broadfoot, Verum Software Technologies
embedded.com (March 09, 2014)
The majority of embedded software developers using traditional programming languages such as C and C++ make use of processes and techniques inherent in the language to improve reliability and reduce security flaws. However, another approach that has met with increasing success is the use of model-driven design (MDD).
The premise of MDD is to raise the abstraction of software development from the low-level imperative programming language that is fraught with opportunities to shoot one’s self in the foot to a higher-level modeling language that reduces the distance between design and implementation and by doing so reduces the flaws that lead to security and safety failures.
Modeling lends itself better to formal proofs of specifications and security policies than do traditional programming languages. Indeed, a side benefit of using some MDD platforms – especially the ones that support formal methods and automatic code generation - is the ability to make formal arguments regarding the correspondence between specification, design, and implementation, a core challenge in all formal approaches. The following will deal with MDD methods that lend themselves to formal analysis and therefore raise the assurance of quality, safety, and security.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- System Performance Analysis and Software Optimization Using a TLM Virtual Platform
- Automotive System & Software Development Challenges - Part 1
- Automotive System & Software Development Challenges - Part 2
- It's Not My Fault! How to Run a Better Fault Campaign Using Formal
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS