Timing closure in multi-level partitioned SoCs
Syed Shakir Iqbal , Mitul Soni & Gourav Kapoor (Freescale)
EDN (October 07, 2015)
With rising SoC design complexity, hierarchical backend design closure has become almost ubiquitous across the industry. Block and sub-block partitioning allow designers to exploit engineering and tool bandwidth more efficiently through optimized resource use. In addition, this approach is compatible with a bottom-to-top design approach.
This is in keeping with design practice wherein mature IP partitions are taken into the backend cycle while work is going on to finish the rest of the chip. Benefits like design-cycle reduction have prompted designers to push for multi-level partitioning schemes. However, as the level of hierarchical partitions increases, so do the challenges involved in their closure and signoff.
In this paper, we discuss the major timing and implementation challenges involved in multi-level hierarchical partitioning and modeling schemes.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
- Flash Memory LDPC Decoder IP Core
Related White Papers
- FPGA prototyping of complex SoCs: Partitioning and Timing Closure Challenges with Solutions
- Complex SoCs: Early Use of Physical Design Info Shortens Timing Closure
- Timing Closure on FPGAs
- Latches and timing closure: a mixed bag
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions