Software-to-silicon verification @ 45 nm and beyond
Tom Borgstrom and Badri Gopalan, Synopsys
EE Times (07/13/2009 12:01 AM EDT)
Chip and system developers once considered verification as a secondary activity following the main challenge of design, with the "Designer" playing the central role in a design's success. This notion is firmly turned on its head today, as verification is the biggest component of chip hardware development budgets, schedules, staffing and risk.
With verification complexity growing faster than Moore's Law, compounded by increasing mixed-signal content and advanced low-power design techniques, the importance of verification in the chip hardware development process is certain to increase. In fact, venture capitalists have started focusing on verification costs as a factor in determining which chip startups to fund. Similarly, embedded software used to be a minor or nonexistent deliverable for typical semiconductor devices. At 45 nm and beyond, software accounts for a full 60 percent of total chip-development cost, with major implications on how chips and systems are verified. It is no surprise, then, that the International Technology Roadmap for Semiconductors (ITRS) predicts that, "Without major breakthroughs, verification will be a non-scalable, show-stopping barrier to further progress in the semiconductor industry."
EE Times (07/13/2009 12:01 AM EDT)
Chip and system developers once considered verification as a secondary activity following the main challenge of design, with the "Designer" playing the central role in a design's success. This notion is firmly turned on its head today, as verification is the biggest component of chip hardware development budgets, schedules, staffing and risk.
With verification complexity growing faster than Moore's Law, compounded by increasing mixed-signal content and advanced low-power design techniques, the importance of verification in the chip hardware development process is certain to increase. In fact, venture capitalists have started focusing on verification costs as a factor in determining which chip startups to fund. Similarly, embedded software used to be a minor or nonexistent deliverable for typical semiconductor devices. At 45 nm and beyond, software accounts for a full 60 percent of total chip-development cost, with major implications on how chips and systems are verified. It is no surprise, then, that the International Technology Roadmap for Semiconductors (ITRS) predicts that, "Without major breakthroughs, verification will be a non-scalable, show-stopping barrier to further progress in the semiconductor industry."
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Verification challenges of ADC subsystem integration within an SoC
- Can Hardware-Assisted Verification Save SoC Realization Time?
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- Mixed Signal Design & Verification Methodology for Complex SoCs
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant