Software-Defined Radio Platforms
By Bart Van Poucke, Bruno Bougrad, and Jan Provoost, IMEC.
March 24, 2008 -- edadesignline.com
In the coming decade, SDRs will drive all types of wireless devices, answering the exploding demand for multi-standard, high-throughput wireless communication. Such SDRs will have rigorous constraints for energy consumption, real-time processing, low-cost fabrication, and short time-to-market design. They will be implemented on multi-purpose, multi-processor System-on-Chips (MPSoCs). But the design of SDRs on MPSoCs brings about a dramatic increase in the complexity of hardware and software design.
IMEC is an independent research center, focusing on next-generation chip technology and on the enabling technologies for ambient intelligence. IMEC's research bridges the gap between fundamental research at universities and development in the industry. IMEC has its headquarters in Leuven (Belgium), and employs more than 1500 people, including 500 industrial residents and guest researchers. One of the research domains of IMEC concerns solving the technology bottlenecks for future wireless, multi-mode, multimedia devices.
A team at IMEC recently took the design complexity hurdle. They designed and demonstrated an SDR on MPSoCs, using advanced methods such as electronic system-level (ESL) design and co-emulation. The team first created a high-level virtual model of the SDR MPSoC. Then, each component of the platform was incrementally refined to the RTL level, verifying each step through co-simulation and co-emulation. State-of-the-art processor design tools were used to further model one of the critical low-power processors of the MPSoC. Also with the ESL tools, the data transfers between the processing cores were optimized to meet the tight timing constraints of baseband processing. The ESL tools helped to achieve an efficient design, especially through the architectural exploration and the early performance assessment.
March 24, 2008 -- edadesignline.com
In the coming decade, SDRs will drive all types of wireless devices, answering the exploding demand for multi-standard, high-throughput wireless communication. Such SDRs will have rigorous constraints for energy consumption, real-time processing, low-cost fabrication, and short time-to-market design. They will be implemented on multi-purpose, multi-processor System-on-Chips (MPSoCs). But the design of SDRs on MPSoCs brings about a dramatic increase in the complexity of hardware and software design.
IMEC is an independent research center, focusing on next-generation chip technology and on the enabling technologies for ambient intelligence. IMEC's research bridges the gap between fundamental research at universities and development in the industry. IMEC has its headquarters in Leuven (Belgium), and employs more than 1500 people, including 500 industrial residents and guest researchers. One of the research domains of IMEC concerns solving the technology bottlenecks for future wireless, multi-mode, multimedia devices.
A team at IMEC recently took the design complexity hurdle. They designed and demonstrated an SDR on MPSoCs, using advanced methods such as electronic system-level (ESL) design and co-emulation. The team first created a high-level virtual model of the SDR MPSoC. Then, each component of the platform was incrementally refined to the RTL level, verifying each step through co-simulation and co-emulation. State-of-the-art processor design tools were used to further model one of the critical low-power processors of the MPSoC. Also with the ESL tools, the data transfers between the processing cores were optimized to meet the tight timing constraints of baseband processing. The ESL tools helped to achieve an efficient design, especially through the architectural exploration and the early performance assessment.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Embedding FPGAs in DSP-driven Software Defined Radio applications
- Automotive radio receiver harnesses Software Defined Radio
- High-Performance DSPs -> Software-defined radio infrastructure taps DSP
- SoC Configurable Platforms -> Taking flexibility to the max in platforms
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval