RTL synthesis requirements for advanced node designs
David Stratman, Sanjiv Taneja (Cadence)
EDN (December 16, 2013)
The small world of sub-20nm design is already upon us and has brought a new set of challenges for register-transfer level (RTL) designers as the race for best performance, power, and area (PPA) continues unabated. Challenges include giga-scale integration of new functionality; new physics effects; new device structures such as FinFETs, multi-Vt and multi-channel devices; interconnect stacks with vastly varying resistance characteristics between the top and bottom layers; and process variation.
These challenges are raising several questions. For example, can RTL synthesis handle giga-scale, giga-hertz designs in a timeframe of market relevance? Can logic synthesis perform accurate and predictive modeling of the interconnect stack and the physical effects in RTL? How do new device structures affect dynamic and leakage power tradeoff and library choices? This paper will explore these challenges and provide an overview of state-of-the-art technology to address them in a predictable and convergent design flow.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Optimal OTP for Advanced Node and Emerging Applications
- Consumer IC Advances -> Meeting MPEG-4 advanced audio coding requirements
- Practical Power Network Synthesis For Power-Gating Designs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS