Practical Power Network Synthesis For Power-Gating Designs
(06/05/2007 3:00 AM EDT), EE Times
Although methodologies for power network synthesis typically assume that design tools can freely size sleep transistors for power gating, this assumption does not hold up for real-world SoC designs where the sleep transistors are commonly designed as custom switch cells of fixed sizes. The method described in this article avoids this unrealistic assumption and introduces the concept of a "fake via" to enable power network synthesis using existing EDA tools.
This method simultaneously optimizes the number and positions of sleep transistors and the power network's grids and wires for minimum area, maximum routeability with a given IR-drop target. With this automated method for synthesizing the power network, you can more easily take advantage of power gating to reduce leakage power consumption dramatically in SoCs.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Context Based Clock Gating Technique For Low Power Designs of IoT Applications - A DesignWare IP Case Study
- Akida Exploits Sparsity For Low Power in Neural Networks
- A modeling approach for power integrity simulation in 3D-IC designs
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems