Rethinking the System Design Process
By Darryl Koivisto, Deepak Shankar, Mirabilis Design Inc.
July 23, 2007 -- edadesignline.com
Introduction
The system design process can incorporate linear thinking, parallel thinking, or both, depending on the nature of the anticipated system, subsystem, or element of a subsystem. The structure, composition, scale, or focal point of a new/incremental system design incorporates the talents and gifts of the designer in either a top-down or bottom-up design style. Is a centralized or distributed approach to processing the best method? Is a symmetrical or asymmetrical topology warranted? Is power or speed the driving criteria? The answer to these questions can lead to a conceptual block diagram that starts the design process, leading to a design specification.
July 23, 2007 -- edadesignline.com
Introduction
The system design process can incorporate linear thinking, parallel thinking, or both, depending on the nature of the anticipated system, subsystem, or element of a subsystem. The structure, composition, scale, or focal point of a new/incremental system design incorporates the talents and gifts of the designer in either a top-down or bottom-up design style. Is a centralized or distributed approach to processing the best method? Is a symmetrical or asymmetrical topology warranted? Is power or speed the driving criteria? The answer to these questions can lead to a conceptual block diagram that starts the design process, leading to a design specification.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- The role of cache in AI processor design
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- EDA in the Cloud Will be Key to Rapid Innovative SoC Design
- Differentiation Through the Chip Design and Verification Flow
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval