How do I reset my FPGA?
Srikanth Erusalagandi, Xilinx
EETimes (8/10/2011 11:46 AM EDT)
Editor’s Note: This article first appeared in the Summer 2011 issue of Xcell Journal, and is reproduced here with the kind permission of Xilinx.
In an FPGA design, a reset acts as a synchronization signal that sets all the storage elements to a known state. In a digital design, designers normally implement a global reset as an external pin to initialize the design on power-up. The global reset pin is similar to any other input pin and is often applied asynchronously to the FPGA. Designers can then choose to use this signal to reset their design asynchronously or synchronously inside the FPGA.
But with the help of a few hints and tips, designers will find ways to choose a more suitable reset structure. An optimal reset structure will enhance device utilization, timing and power consumption in an FPGA.
Understanding the flip-flop reset behavior
Before we delve into reset techniques, it is important to understand the behavior of flip-flops inside an FPGA slice. Devices in the Xilinx 7 series architecture contain eight registers per slice, and all these registers are D-type flip-flops. All of these flip-flops share a common control set.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Resets in FPGA & ASIC control and data paths
- Firmware-friendly reset design
- How to Choose the Right FPGA
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events