Reducing cycle times for design rule checking
James Paris, Mentor Graphics Corp.
(07/31/2006 9:00 AM EDT), EE Times
Design rule checking (DRC) is the gold standard in the hand-off of IC designs to the manufacturer. From the beginning, when newly developed physical verification tools automated the manual check method, a DRC-clean design was the most accurate ticket to yield. Based on a compliance method of pass/no pass, the system was simple and straightforward, giving designers a faster method of sign-off and measurable assurance for successful silicon.
But at 130nm node, DRC-clean designs began failing first silicon. At that time, it became obvious that the compliance process required more than pass/no pass. This didn't mean DRC was no longer a valid process for sign-off; it did mean, however, that DRC would have to evolve. Robust verification tools began to do just that, managing design-for-manufacturing capabilities, such as antennae effects, stress effects, metal fill and via insertion.
But that was just the beginning of the evolution. For the upcoming nanometer nodes of 65nm and 45nm, the DRC engine is revving up for a whole new race.
(07/31/2006 9:00 AM EDT), EE Times
Design rule checking (DRC) is the gold standard in the hand-off of IC designs to the manufacturer. From the beginning, when newly developed physical verification tools automated the manual check method, a DRC-clean design was the most accurate ticket to yield. Based on a compliance method of pass/no pass, the system was simple and straightforward, giving designers a faster method of sign-off and measurable assurance for successful silicon.
But at 130nm node, DRC-clean designs began failing first silicon. At that time, it became obvious that the compliance process required more than pass/no pass. This didn't mean DRC was no longer a valid process for sign-off; it did mean, however, that DRC would have to evolve. Robust verification tools began to do just that, managing design-for-manufacturing capabilities, such as antennae effects, stress effects, metal fill and via insertion.
But that was just the beginning of the evolution. For the upcoming nanometer nodes of 65nm and 45nm, the DRC engine is revving up for a whole new race.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- Shift Left for More Efficient Block Design and Chip Integration
- Rising respins and need for re-evaluation of chip design strategies
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
Latest White Papers
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network