PCI Express Gen 3 Simplified
By Akber Kazmi, PLX Technology
Embedded.com (02/24/09, 12:30:00 AM EST)
The PCI-SIG, an industry organization dedicated to developing and enhancing PCI/PCI Express (PCIe) technology, has successfully developed the PCI, PCI-X and PCIe Gen 1 and Gen 2 interconnect protocols and promoted the deployment of these technologies since PCI's inception in 1992.
In early 2008, the PCI-SIG announced the establishment of a workgroup chartered with the development of the next generation of PCIe " the PCI Express Base Specification 3.0, or PCIe Gen 3.
The Gen 3 specification is yet another step forward in enhancing the usefulness of the PCIe protocol by doubling the effective bandwidth and adding protocol enhancements to increase end-system performance.
Leading up to this development, IBM and Intel in 2006 launched an initiative called Geneseo, proposing extensions to the PCIe protocol for high-performance computing and visual processing.
Recommendations from this initiative were provided to the PCI-SIG as potential PCIe protocol enhancements. In addition to the adoption of Geneseo, several other engineering change notices (ECNs) were released by the PCI-SIG, providing enhancements for the efficiency and usefulness of the PCIe protocol.
This article will shed light on the PCIe Gen 3 standard, as well as some of the key enhancements that will be implemented in PCIe Gen 3 components.
Ten key enhancements have been completed and will be implemented in next-generation PCIe devices and systems. Some of these enhancements may get implemented into PCIe Gen 2 devices, while others will only be supported in Gen 3 products. Let's take a closer look at some of these enhancements (Table 1) approved as ECNs to the PCIe specification.
Embedded.com (02/24/09, 12:30:00 AM EST)
The PCI-SIG, an industry organization dedicated to developing and enhancing PCI/PCI Express (PCIe) technology, has successfully developed the PCI, PCI-X and PCIe Gen 1 and Gen 2 interconnect protocols and promoted the deployment of these technologies since PCI's inception in 1992.
In early 2008, the PCI-SIG announced the establishment of a workgroup chartered with the development of the next generation of PCIe " the PCI Express Base Specification 3.0, or PCIe Gen 3.
The Gen 3 specification is yet another step forward in enhancing the usefulness of the PCIe protocol by doubling the effective bandwidth and adding protocol enhancements to increase end-system performance.
Leading up to this development, IBM and Intel in 2006 launched an initiative called Geneseo, proposing extensions to the PCIe protocol for high-performance computing and visual processing.
Recommendations from this initiative were provided to the PCI-SIG as potential PCIe protocol enhancements. In addition to the adoption of Geneseo, several other engineering change notices (ECNs) were released by the PCI-SIG, providing enhancements for the efficiency and usefulness of the PCIe protocol.
This article will shed light on the PCIe Gen 3 standard, as well as some of the key enhancements that will be implemented in PCIe Gen 3 components.
Ten key enhancements have been completed and will be implemented in next-generation PCIe devices and systems. Some of these enhancements may get implemented into PCIe Gen 2 devices, while others will only be supported in Gen 3 products. Let's take a closer look at some of these enhancements (Table 1) approved as ECNs to the PCIe specification.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- PCI Express 3.0 needs reliable timing design
- PCI Express 3.0 needs reliable timing design
- Attacking the Verification Challenge: Applying Next Generation Verification IP to PCI Express-based Design (by N. Mullinger, J. Hopkins & R. Hill from Synopsys)
- How HyperTransport and PCI Express complement each other
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval