Optimizing data memory utilization
Colin Walls, Mentor Graphics
embedded.com (January 12, 2015)
Optimization is important to embedded software developers because they are always facing limited resources. So, being able to control the size and speed trade-off with code is critical. It is less common for thought to be given to the optimization of data, where there can be a similar speed-versus-size tension. This article looks at how this conflict comes about and what the developer can do about it.
A key difference between embedded and desktop system programming is variability: every Windows PC is essentially the same, whereas every embedded system is different. There are a number of implications of this variability: tools need to be more sophisticated and flexible; programmers need to be ready to accommodate the specific requirements of their system; standard programming languages are mostly non-ideal for the job. This last point points towards a key issue: control of optimization.
Optimization is a set of processes and algorithms that enable a compiler to advance from translating code from (say) C into assembly language to translating an algorithm expressed in C into a functionally identical one expressed in assembly. This is a subtle but important difference.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- The best of both worlds: Optimizing OCP slave memory behavior
- DDR3 memory interface controller IP speeds data processing applications
- Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
- Optimizing High Performance CPUs, GPUs and DSPs? Use logic and memory IP - Part II
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS