Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
Ken Brock, Synopsys
EDN (October 28, 2013)
Mobile communications, multimedia and consumer systems-on-chip (SoCs) must achieve the highest performance while consuming the minimal amount of energy to achieve longer battery life and/or fit into lower cost packaging. CPUs, GPUs and DSPs typically each have unique performance, power and area targets for each new silicon process node. Each new generation brings a new set of challenges to SoC designers and a new set of opportunities to create higher performance and more power-efficient IP to enable SoC designers to deliver the last megahertz of performance, while squeezing out the last nanowatt of power and last square micron of area. SoC designers need to first be aware of the advances in logic and memory IP and then they must know how to take advantage of these advances for the key components of their chips using the latest EDA flows and tools to stay ahead of their competitors.
In this two-part article we describe available logic library and memory compiler IP and a typical EDA flow for hardening processor cores. Part I continues on to provide innovative techniques, using those logic libraries and memory compilers within the design flow, to optimize processor area. Part II describes methods using these same elements for optimizing the performance and power consumption of processors. The article finishes with a preview of how the innovation of FinFET technology will affect logic and memory IP and its use in hardening optimal CPU, GPU and DSP cores.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- Optimizing High Performance CPUs, GPUs and DSPs? Use logic and memory IP - Part II
- High-Performance DSPs -> Voice control enhances appliance apps
- High-Performance DSPs -> Overcoming hot spots in Viterbi equalization
- High-Performance DSPs -> Software-defined radio infrastructure taps DSP
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection