On hardware dependencies and scrum
Mike Hogg, Zuhlke
embedded.com (January 22, 2014)
Embedded systems require hardware. We've experienced successful hardware development following agile principles, in particular by ASIC and FPGA teams. Nevertheless, many hardware engineers find it impossible to follow an agile approach; their "design -- manufacture -- assemble -- test" lifecycle is often too long and expensive for such an iterative incremental scheme. How can agile software developers work with such hardware engineers?
Let's focus on running a scrum process when there are inter-dependencies with a non-agile team. Advice on managing this scenario is rare.
Agile teams work on user stories that describe the functionality to be delivered. These are collected in a product backlog. Should user stories only cover software features? No, in the embedded space software alone is insufficient to make a product. Rather, we can use top level stories (known as epics) that reflect the combined software and hardware development needed, and are understood by both disciplines. The software team will likely break these epics down in to a series of smaller constituent user stories for the software features, while the hardware team may manage their work differently.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A Survey on the Design, Detection, and Prevention of Pre-Silicon Hardware Trojans
- HW/SW Interface Generation Flow Based on Abstract Models of System Applications and Hardware Architectures
- Practical Case: Embedded Multiprocessor Design on a Flexible Hardware: NEO_CORE_CYCLONE_III
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension