A Survey on the Design, Detection, and Prevention of Pre-Silicon Hardware Trojans
By Jonathan Cruz and Jason Hamlet, Sandia National Laboratories
The complexity of the semiconductor design lifecycle and globalized manufacturing process creates concern over the threat of deliberate malicious alterations, or hardware Trojans, being inserted into microelectronic designs. This has resulted in a significant corpus of hardware Trojan research including Trojan design and benchmarking efforts and development of corresponding metrics and detection and prevention techniques, over the last two decades. In this survey, we first highlight efforts in Trojan design and benchmarking, followed by a cataloging of seminal and recent works in Trojan detection and prevention and their accompanied metrics. Given the volume of literature in this field, this survey considers only pre-silicon techniques. We make this distinction between pre- and post-silicon to properly scope and provide appropriate context into the capabilities of existing hardware Trojan literature. Each major section (design, prevention, and detection) is accompanied by insights, and common pitfalls, which we highlight can be addressed by future research.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- The Growing Imperative Of Hardware Security Assurance In IP And SoC Design
- Why Hardware Root of Trust Needs Anti-Tampering Design
- Importance of VLSI Design Verification and its Methodologies
- Rising respins and need for re-evaluation of chip design strategies
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions