Multicore technologies and software challenges
By Rajagopal Nagarajan, Mindtree
Embedded.com (12/29/09, 12:06:00 PM EST)
Multicore processors, which are basically processors with more than one core, are entering mainstream. Today, even desktops are having two or four cores and this trend is picking up and will only accelerate in coming years. This article looks at the drivers for the multicore, the challenges posed to the software community by the emergence of multicore technologies, the different options available in software and how the software community is likely to react to the challenges.
In recent times, there has been a perceptible slow down in the Moore's Law. Moore's Law says that the number of transistors will double in every 18 months. Well, transistor count is doubling, but performance is not keeping in pace. Performance kept pace till 2002 due to technologies like pipelining, caching and superscalar designs. After that however, the gap has started becoming visible as the returns from these technologies began to yield diminishing returns.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- The challenges of nextgen multicore networks-on-chip systems: Part 1
- The challenges of next-gen multicore networks-on-chip systems: Part 2
- The challenges of next-gen multicore networks-on-chip systems: Part 4
- Going multicore presents challenges and opportunities
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design