The challenges of next-gen multicore networks-on-chip systems: Part 2
By Luca Benini and Giovanni De Micheli, Embedded.com
Feb 12 2007 (0:30 AM) -- Embedded.com
There are several hardware types of SoC designs that can be defined according to the required functionality and market. In general, SoCs can be classified in terms of their versatility (i.e., support for programming) and application domains. A simple taxonomy is described next:
General-purpose on-chip multiprocessors are high-performance chips that benefit from spatial locality to achieve high performance. They are designed to support various applications, and thus the processor core usage and traffic patterns may vary widely. They are the evolution of on-board multiprocessors, and they are typified by having a homogeneous set of processing and storage arrays.
For these reasons, on-chip network design can benefit from the experience on many architectures and techniques developed for on-board multiprocessors, with the appropriate adjustments to operate on a silicon substrate.
Feb 12 2007 (0:30 AM) -- Embedded.com
There are several hardware types of SoC designs that can be defined according to the required functionality and market. In general, SoCs can be classified in terms of their versatility (i.e., support for programming) and application domains. A simple taxonomy is described next:
General-purpose on-chip multiprocessors are high-performance chips that benefit from spatial locality to achieve high performance. They are designed to support various applications, and thus the processor core usage and traffic patterns may vary widely. They are the evolution of on-board multiprocessors, and they are typified by having a homogeneous set of processing and storage arrays.
For these reasons, on-chip network design can benefit from the experience on many architectures and techniques developed for on-board multiprocessors, with the appropriate adjustments to operate on a silicon substrate.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Next Gen Scan Compression Technique to overcome Test challenges at Lower Technology Nodes (Part - I)
- Handling the Challenges of Building HPC Systems We Need
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
Latest Articles
- PermuteV: A Performant Side-channel-Resistant RISC-V Core Securing Edge AI Inference
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX