Multicore programming made easy?
By Richard Stahl, IMEC
Embedded.com (09/23/09, 10:10:00 AM EDT)
The first multicore platforms have found their way into embedded systems for entertainment and communication, especially thanks to their greater computational power, flexibility, and energy efficiency. However, as we will show, mapping applications onto these systems remains a challenge that is costly, slow, and prone to errors.
Although the multicore programmable architectures have a huge potential to tackle present and future applications, a key issue is still open: how can developers map an application onto such a multicore platform fast and efficiently, while profiting from the potential benefits of parallel processing?
This question can be reformulated as: what programming model should they use? (In a broad sense, a programming model is a set of software technologies and abstractions that provides the designer with means to express the algorithm in a way that matches the target architecture. These software technologies exist at different levels of abstraction and encompass programming languages, libraries, compilers, run-time mapping components, and so forth.)
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- How FPGAs, multicore CPUs, and graphical programming are changing embedded design
- Embedded Systems: Programmable Logic -> Programming enters designer's core
- Tools For Reprogrammability -> Reuse forces embedded programming
- Network processors need a new programming methodology
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection