Mission Critical in Auto SoC: Interconnect IP
Kurt Shuler, VP Marketing, Arteris
EETimes (10/22/2016 08:00 AM EDT)
The average number of IP cores integrated into automotive SoCs is growing from about 20 today to more than 100 within the next five to ten years.
Today, the automobile industry is a key driver for technology innovation much like the mobile industry propelled growth in earlier part of the new millennium.
While the market for electronics in cars is relatively small in comparison to the mobile industry today, the growth rate is higher, which makes it all the more compelling for the next generation of SoC designs.
Much like the mobile industry before it, the growth in capabilities and features for automotive electronic systems is driving the transition from microcontrollers to ever more sophisticated microprocessors in ever more complex SoCs.
Application areas are expanding from engine control units into Advanced Driver Assistance Systems (ADAS), self-driving systems with over-the-air updating capabilities, active safety systems, infotainment systems and more.
In particular, ADAS are driving up the semiconductor bill-of-materials (BOM) in automobiles due to the requirements for advanced processing and sensing. Figure 1 below provides a breakdown for the growing semiconductor revenue as automation increases in cars.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- NoC Interconnect Fabric IP Improves SoC Power, Performance and Area
- SOC Stability in a Small Package
- Low Power Design in SoC Using Arm IP
- How to manage changing IP in an evolving SoC design
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design