Maximizing performance in FPGA systems
(01/02/2006 10:00 AM EST)
EE Times
With programmable hard intellectual property like DSP building blocks, serdes and embedded processors, FPGAs have become complex systems-on-chip. As a result, extracting higher performance involves far more than just cranking up the fabric clock rate. Typically, one must balance a complex set of requirements-I/O bandwidth, hardware logic and/or embedded-processing performance.
Harnessing built-in FPGA features for maximum performance also takes the right combination of design techniques. Tool settings are needed that optimally implement the functional description as written in RTL code. Each phase of design development, synthesis and implementation is critical.
System architecture must be considered for effective trade-offs between programmable hardware resources. With the architecture defined and RTL code ready, synthesis tools assign the design's basic conceptual building blocks to technology cells.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- How to get more performance in 65 nm FPGA designs
- How to maximize FPGA performance
- Achieving FPGA Design Performance Quickly
- Achieving FPGA Design Performance Quickly
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions