Achieving FPGA Design Performance Quickly
Joe Mallett, Synopsys
EETimes (2/8/2017 11:20 AM EST)
This column highlights the broad steps designers need to complete as they close timing and how tool automation helps to simplify the process.
Today's engineering teams are tasked with delivering FPGA-based products under incredible schedule constraints to market windows. Closing timing constraints is still a challenge for many designers. FPGA design tools are a necessity to help define and apply the correct constraints to a design to quickly close timing and complete the project. This blog highlights the broad steps designers need to complete as they close timing and how tool automation helps to simplify the process.
- Design setup
- Initial timing constraint setup
- Constraints tuning
When starting a new project, designers need to setup the environment and import the IP for the design, which may come from multiple sources. FPGA design tools help automate this process for designers, making it easier and faster while also helping to remove import errors from the process. In addition to the IP import, the tools should automate the constraint import for a given block. These constraints will be shown in the FPGA Design Constraints (FDC) files within the tools, showing the correct syntax for things like clocks, I/O, and clock groups.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Achieving FPGA Design Performance Quickly
- How to get more performance in 65 nm FPGA designs
- Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
- How to maximize FPGA performance
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models