Manufacturability With Embedded Infrastructure IPs
by Dr. Yervant Zorian and Dr. Mouli Chandramouli, Virage Logic
Every new generation of semiconductor technology delivers the advantage of higher levels of integration and performance, providing advanced capabilities in a multitude of electronic applications. However, the shrinking geometries of 0.13 micron and below in deep submicron technologies make such devices more susceptible to new yield-limiting defects that impact conventional semiconductor manufacturing operations.
The existing external infrastructure including ATE and associated equipment is not necessarily capable of coping with the new defect levels in terms of detection, isolation, diagnosis, and yield-optimization solutions. This limitation has slowed down the widespread deployment of system-on-a-chip (SOC) designs. To deliver high-volume products, the nanometer technologies require more than external infrastructure.
As a result, we see a need for on-chip support infrastructure to tackle these manufacturability issues. To address this challenge, semiconductor intellectual property (IP) providers have introduced embedded IP blocks called infrastructure IP (IIP), and designers have incorporated these IIP blocks into SOC designs. The IIPs supply a range of test, diagnosis, and repair capabilities throughout the life cycle of the device.
Read more ....
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Infrastructure IPs build ICs out well
- Dealing with memory access ordering in complex embedded designs
- Make SoCs flexible with embedded FPGA
- A Cost-Effective Reuse Method of Off-the-Shelf MIMO Wireless LAN IPs with a Nested Spatial Mapping
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions