Design for Low-Power Manufacturing Test
By Chris Allsup, Synopsys, Inc.
March 18, 2008 -- edadesignline.com
The very process of testing digital circuits routinely increases their dynamic power consumption to levels far exceeding their power specification. If the power consumption is great enough, it can result in failures at wafer probe or pre-burn-in package test that require a significant amount of time and effort to debug. This issue, especially prevalent when testing very large systems-on-a-chip (SoCs) under corner conditions, causes unnecessary yield loss on the production line and ultimately reduces manufacturers' gross margins. The best way to avoid test power problems is to incorporate power-aware testing techniques in the design-for-test (DFT) process. In this article, we'll first examine the relationship between dynamic power consumption and test to determine why managing power is more critical today than ever before. Then we'll explore two distinct DFT methodologies that take advantage of recent advances in automatic test pattern generation (ATPG) technology to automate generation of low-power manufacturing tests.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- The need to address power during manufacturing test
- Low power is everywhere
- An ESD efficient, Generic Low Power Wake up methodology in an SOC
- A need for static and dynamic Low Power Verification
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions