ISS and architectural exploration
Deepak Shankar, Founder and CEO, Mirabilis Design Inc.
EETimes (6/24/2013 10:35 AM EDT)
Every time the conversation on performance analysis and architecture exploration crops up, the questions turns to ISS or Instruction Set Simulator. �Do you have the ISS for XYZ processor?� This leads to a discussion on what is an ISS suitable for. Many EDA companies have developed ISSs, with the false promise of solving everything from software debugging and verifying the hardware, to auto-generating a board with all the peripherals pre-loaded. This gains an impression that the ISS is the solution for all your system development needs.
In reality, architectural exploration is an innovative choice to obtain results faster with quality results. An Instruction Set Simulator provides the user with the ability to load the Operating System and execute the compiled code. This is a good solution for early software debugging. It is not a good solution when you are experimenting or trying out new architectures such as a new bus topology, different memory hierarchy, or processor clock speed sizing. Moreover the OS and the executable are tied to one processor family. If you want to evaluate another processor family, or a processor with a different set of peripherals, you need to get a new ISS and recompile the entire code. Moreover, there is a significant lag between the processor release and the ISS availability. An alternate to an ISS is imperative code execution for architecture exploration.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- System architecting by prospective performances analysis and architectural exploration
- Simultaneous Exploration of Power, Physical Design and Architectural Performance Dimensions of the SoC Design Space using SEAS
- Simultaneous Exploration of Power, Physical Design and Architectural Performance Dimensions of the SoC Design Space using SEAS
- Ultra Ethernet's Design Principles and Architectural Innovations
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension