Is software the new hardware?
(08/07/2006 9:00 AM EDT), EE Times
Building an embedded product is a complex undertaking, involving highly intertwined hardware and software components and thousands of individual design decisions. The pressure to deliver a product to market quickly makes complexity still more difficult to manage, because design trade-offs and alternatives can't always be properly tested and evaluated.
Simulation using software prototypes (models) of the hardware design is one path to establishing a design direction and making intelligent trade-off decisions. Traditionally, however, simulation has suffered from poor performance (slow execution times) and inadequate information. While system-level simulation has been useful in modeling and testing a particular component or interaction, under most circumstances the technique has not been able to deliver the level of detail needed to manage complexity and thereby accelerate product delivery.
Nonetheless, simulation techniques have come a long way. Today's virtual prototypes can handle entire systems, modeling components, signals and hardware-software interactions with a high level of accuracy. And if you're willing to accept trade-offs between the level of detail and level of performance, you can have a bit of both.
The result is a new product design flow that emphasizes hardware and software co-development based on a design prototype.
How is that done? First, commercial prototype intellectual-property libraries, such as those available from Synopsys Inc. and Vast Systems Technology Corp., have become effective in building detailed software models that reflect popular processors, components and even entire reference designs. In many cases, these software models are available early in the product life cycle, sometimes even before silicon is available.
Second, the performance of simulated systems has improved enormously. That has been achieved in part by the faster and more-efficient processors employed by the latest desktop engineering systems. Additional performance improvements come from more-intelligent simulation systems.
The ability to simulate critical components with a high degree of accuracy, combined with the early availability of such simulation models, offers the potential to accelerate product design and even transform the design process for many embedded systems.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
- Flash Memory LDPC Decoder IP Core
Related White Papers
- A Simple New Approach to Hardware Software Co-Verification
- A New Methodology for Hardware Software Co-verification
- SOCs: IP is the new abstraction
- A new approach to hardware design project management
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions