The IoT is turning software development upside down
Peter Thorne, Cambashi Ltd.
embedded.com (September 30, 2014)
There are many complexities to a ‘disconnected’ embedded system, but at least the software is operating within a defined domain of memory and processors, together with the I/O registers that connect to real-world sensors, timers, displays and actuators. Development engineers create architecture and design documents to specify every piece of the system, and define the response to every external stimulus. In this type of environment, an embedded system software developer can access all the design documentation. The entire universe for the embedded software in this system is well defined.
The Internet of Things has made the environment for embedded software a lot more complex. Architects and designers are finding ways of making products more functional, more competitive and more convenient by creating ‘systems-of-systems’ to implement and deliver new capabilities.
There are examples in every industry, from aerospace and industrial machinery to healthcare and consumer electronics. If you are building controllers for agricultural machinery today, you have to think about GPS capabilities to enable the connected controller to determine the optimum amount of fertilizer to apply to each square yard of the field.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- SystemC in SOC Development
- Automotive System & Software Development Challenges - Part 1
- Automotive System & Software Development Challenges - Part 2
- Why Embedded Software Development Still Matters: Optimizing a Computer Vision Application on the ARM Cortex A8
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant