Automotive System & Software Development Challenges - Part 1
Frank Schirrmeister, Cadence Design Systems
EDN (November 5, 2013)
Today’s high-end cars contain between 70 and 100 embedded processors and run up to 100 million lines of code according to the IEEE Spectrum article “This Car runs on Code.” Specialized cars, like Indy cars can have many more sensors and data acquisition/telemetry components to optimize for racing. Integration of all the hardware and software needed to make any car perform correctly is no small task. It takes a lot of simulation, modeling, verification and IP.
This article will summarize the development challenges from analog-mixed-signal simulation to proper system configuration as well as hardware software co-design and outline some solutions that are essential to successful system development across the design chain.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Automotive System & Software Development Challenges - Part 2
- Using model-driven development to reduce system software security vulnerabilities
- Dealing with automotive software complexity with virtual prototyping - Part 1: Virtual HIL development basics
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems