Is Intel within ARM's reach? Pedestrian Detection shows the way
Ranjith Parakkal, Uncanny Vision
EDN (August 20, 2013)
Comparing smart-phone performances - and the SOC and processor cores that drive them - has been a hotly discussed topic of late. More so now, since Intel is trying to challenge ARM in the low-power mobile space with the Atom processor, while ARM is trying to challenge Intel in the server space with the Cortex-A53 and A57. There have been articles written previously comparing the performance of ARM-based phones Vs Atom-based ones - and many benchmarks too- but perhaps not one that compares Cortex-A15 Vs A9 Vs Intel Core i3 from an actual developers perspective. In this post I will try to share my experience working on optimizing computer vision algorithms, pedestrian detection in particular, and compare the performance of the same on the three processors.
Computer vision in layman's terms can be described as analytics that can gleaned from a video or an image. Face detection and recognition are easily understood examples of computer vision.
So why use a computer vision algorithm for benchmarking?
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- ARM Security Solutions and Intel Authenticated Flash -- How to integrate Intel Authenticated Flash with ARM TrustZone for maximum system protection
- Using the ARM Cortex-R4 for DSP, part 1: Benchmarks
- Mobile video: ARM vs. DSP vs. hardware
- ARM vs incumbent microprocessor architectures
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events