Improve performance and reduce power consumption in mixed-signal designs
February 14, 2007 -- rfdesignline.com
Designing high-reliability satellite communications systems is perhaps the most challenging mixed-signal design task. In addition to withstanding a wide range of temperatures and radiation, these systems also have to offer unprecedented levels of performance and reliability. Once the domain of only the military, space applications are now also fully entrenched in commercial markets, so cost and size have become key drivers for devices and components used in these applications as well. And, because of the lack of a ready power supply, one of the greatest concerns for satellite communications designers may be power consumption.
As a result, satellite system designers need devices with high levels of design flexibility and performance combined with low power consumption. By constructing their designs with devices built using UltraCMOS™ technology, a cost-effective silicon on insulator (SOI) technology on a sapphire substrate, they can satisfy design needs that could not be met with traditional GaAs and bulk CMOS alternatives.
Phase locked loops (PLLs), intermediate frequency (IF) integrated subsystems, and prescalers are some of the major mixed-signal (RF and digital) devices now being used in space applications. When implemented in UltraCMOS, they can lead to the design of lighter, smaller, higher-performing, lower-cost satellite systems that cost less to launch.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related White Papers
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- How to reduce power consumption in CPLD designs with power supply cycling
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- Why using Single Root I/O Virtualization (SR-IOV) can help improve I/O performance and Reduce Costs
Latest White Papers
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage