Time to exploit IDEs for hardware design and verification
Cristian Amitroaie, Amiq Consulting, Andrew Betts, an independent consultant
5/18/2011 10:26 AM EDT
Integrated Development Environments are solidly established in the software community. Eclipse, a major open source IDE, has been downloaded over 5 million times. Data published in 2008 by its rival, NetBeans, showed their IDE to be in use by over 2 million users worldwide. Commercial IDEs, such as Microsoft’s Visual Studio, are also popular.
The IDE’s advantages to software engineers are many, and most of them are relevant to engineers working on hardware verification. It is, after all, a software task. Languages used include C, C++ and SystemC, of course, but increasingly the dedicated verification languages e and SystemVerilog. Many aspects of hardware design are also language based, and can potentially benefit from the use of an IDE. Most digital designers use VHDL or Verilog, and Analog/Mixed-Signal (AMS) designers are increasingly taking up related languages such as VHDL-A and VerilogAMS.
By taking a closer look at the differences between the general software and the more specialized hardware verification communities, this article will attempt to explain the current growth and future prospects of IDEs in hardware verification. The implications for hardware design are also examined.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- Parameterizable compact BCH codec
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
Related Articles
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- Importance of VLSI Design Verification and its Methodologies
- Shift Left for More Efficient Block Design and Chip Integration
- Rising respins and need for re-evaluation of chip design strategies
Latest Articles
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?