Hyper pipelining of multicores and SoC interconnects
Tobias Strauch, EDAptability
EETimes (11/2/2010 5:54 AM EDT)
1. Introduction
We have seen an enormous rise of multiprocessor usage and its support infrastructure over the past years. This trend will most likely continue and is already challenging the community with new hard- and software problems.
Interconnects for multiprocessor SoCs are one potential bottleneck and require additional optimizations to achieve the necessary data throughput. Also for SoCs with cores such as graphic engines, de-/encoders, DMAs and external DRAMs, interconnects are facing tough hurdles as we can see it in the field of video applications, for instance.
The instantiation for multiple equal cores such as processors, DSPs and peripherals are also driven by ever-increasing challenges of all kinds of applications. We move from 2D to 3D, multiple audio channels, more and more enhanced network switches, multiple channel sensor readout and processing and, last but not least, there is an ever increasing number of instantiation of thousands of equal cores in super-computers.
In this paper, a method is discussed: How the functionality of a core can be multiplied by just adding registers to the core. Not only does this result in less area usage compared to its individual instantiations, but it can also have a substantial beneficial impact on the system performance as a whole. This method is called “hyper pipelining” and is explained in chapter 2. In chapter 3, different approaches and their impact on the system architecture are discussed. Chapter 4 shows the results of a hyper pipelined complex RISC core (OR1200 from OpenCores) in detail.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- High-Performance DSPs -> Serial interconnects back high-performance computing
- Making Interconnects More Flexible
- Ethernet, PCI Express ride interconnects
- Measuring the value of third party interconnects
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics