How to write an optimized FIR filter
By Robert Oshana, Texas Instruments

April 23, 2007, dspdesignline.com
This article shows how to write optimized FIR filter code for a DSP, using the Texas Instruments C55x architecture as an example.
April 23, 2007, dspdesignline.com
This article shows how to write optimized FIR filter code for a DSP, using the Texas Instruments C55x architecture as an example.
Today's DSP architectures are made specifically to maximize throughput of DSP algorithms, such as a DSP filter. Some of the features of a DSP include:
- On-chip memory – Internal memory allows the DSP fast access to algorithm data such as input values, coefficients and intermediate values.
- Special MAC instruction – For performing a multiply and accumulate, the crux of a digital filter, in one cycle.
- Separate program and data buses – Allows the DSP to fetch code without affecting the performance of the calculations.
- Multiple read buses – For fetching all the data to feed the MAC instruction in one cycle.
- Separate Write Buses – For writing the results of the MAC instruction. Parallel architecture – DSPs have multiple instruction units so that more than one instruction can be executed per cycle.
- Pipelined architecture – DSPs execute instructions in stages so more than one instruction can be executed at a time. For example, while one instruction is doing a multiply another instruction can be fetching data with other resources on the DSP chip.
- Circular buffers – To make pointer addressing easier when cycling through coefficients and maintaining past inputs.
- Zero overhead looping – Special hardware to take care of counters and branching in loops.
- Bit-reversed addressing – For calculating FFTs.
To read the full article, click here
Related Semiconductor IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
Related White Papers
- How to manage changing IP in an evolving SoC design
- Systolic FIR Filter Based FPGA
- Selecting an embedded MCU: How to avoid evaluation trap?
- How to achieve 1 trillion floating-point operations-per-second in an FPGA
Latest White Papers
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems