How to use UML in your SoC hardware/software design: Part 2
Jul 24 2006 (9:00 AM), Embedded.com
In the first article in this series, we introduced the notion of an executable UML, but we did not describe the elements of which it consists. These elements must be sufficiently primitive to be translatable into multiple implementations, including hardware, but be powerful enough to be useful.
The number of elements in executable UML must also be low to ease the construction of translators, to ease the burden of learning the language, and to eliminate the ambiguity that accompanies the use of multiple constructs to represent the same concept. Determining exactly which elements make up an executable UML is therefore a matter of judgment.
In this second article, we describe the elements of Executable and Translatable UML (xtUML, or just Executable UML) [1], how actions enable description of behavior at a higher level of abstraction, the dynamic behavior of an executable UML model, and how a model of an SoC design can be verified before committing to a hardware-software partition.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- How to manage changing IP in an evolving SoC design
- How to reuse your IIoT technology investments - now
- How to use snakes to speed up software without slowing down the time-to-market?
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 2
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design