From ADAS to Autonomous Cars: Key Design Lessons
Kurt Shuler, VP Marketing, Arteris
3/27/2018 00:01 AM EDT
Autonomous driving can be challenging. But here are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
Autonomous driving systems are challenging design engineers in ways that personal computer, smartphone, and data center systems did not. At the same time, however, there is a lot that semiconductor developers can learn from the evolution of advanced driving assistance systems (ADAS).
So, while integration challenges may perplex the developers of system-on-chips (SoCs) for self-driving vehicles, the ADAS learning curve can be crucial in putting the technology of the century to work in the cars of the future.
Below are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
To read the full article, click here
Related Semiconductor IP
- FlexNoC 5 Interconnect IP
- High-scalable, high-performance Interconnect fabric IP with cache coherence support
- Interconnect fabric IP with cache coherence support
- A2B System Interconnect
- High speed NoC (Network On-Chip) Interconnect IP
Related White Papers
- EDA in the Cloud Will be Key to Rapid Innovative SoC Design
- How to design secure SoCs, Part II: Key Management
- Key Safety Design Overview in AI-driven Autonomous Vehicles
- Lessons learned from extending 0.12 um CMOS for multimillion gate, IP designs
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design