From ADAS to Autonomous Cars: Key Design Lessons
Kurt Shuler, VP Marketing, Arteris
3/27/2018 00:01 AM EDT
Autonomous driving can be challenging. But here are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
Autonomous driving systems are challenging design engineers in ways that personal computer, smartphone, and data center systems did not. At the same time, however, there is a lot that semiconductor developers can learn from the evolution of advanced driving assistance systems (ADAS).
So, while integration challenges may perplex the developers of system-on-chips (SoCs) for self-driving vehicles, the ADAS learning curve can be crucial in putting the technology of the century to work in the cars of the future.
Below are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
To read the full article, click here
Related Semiconductor IP
- FlexNoC 5 Interconnect IP
- High speed NoC (Network On-Chip) Interconnect IP
- Universal Chiplet Interconnect Express(UCIe) VIP
- AXI Interconnect
- AXI Interconnect Fabric
Related White Papers
- EDA in the Cloud Will be Key to Rapid Innovative SoC Design
- How to design secure SoCs, Part II: Key Management
- Key Safety Design Overview in AI-driven Autonomous Vehicles
- Lessons learned from extending 0.12 um CMOS for multimillion gate, IP designs
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design