PRODUCT HOW-TO: Building an FPGA-based Digital Down Converter
Embedded.com (06/03/09, 06:37:00 AM EDT)
The digital downconverter (DDC) has become a cornerstone technology in communication systems. Similar to its analog receiver counterpart, the DDC provides the user with a means to tune and extract a frequency of interest from a broad radio spectrum.
Over the past few years, the functions associated with DDCs have seen a shift from being delivered in ASICs to operating as IP (intellectual property) in FPGAs.
For many applications, this implementation shift brings advantages such as design flexibility, higher precision processing, higher channel density, lower power and lower cost per channel. With the advent of each new higher performance FPGA family, these benefits continue to increase.
This article explores some of the key advantages of implementing DDC designs in FPGAs and describes some of the situations when ASICs can still offer the best solution.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related White Papers
- Building FPGA-based digital downconverters with graphical design tools
- Understanding Interface Analog-to-Digital Converters (ADCs) with DataStorm DAQ FPGA
- Time Interleaving of Analog to Digital Converters: Calibration Techniques, Limitations & what to look in Time Interleaved ADC IP prior to licensing
- LVDS ups A/D converter data rates
Latest White Papers
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs