How formal MDV can eliminate IP integration uncertainty
The increased deployment of silicon intellectual property (IP) blocks is vital to boosting productivity in the development of large, complex system-on-chip (SoC) designs. But the increase in SoC design productivity is not matched by as great an increase in SoC verification productivity. Managers and engineers still struggle with a persistent “verification productivity gap.” Why? Because there is a persistent IP verification quality gap, too. The resulting uncertainty about the original verification quality of individual IP blocks often requires time-consuming remedial verification by the SoC design team. The alternative is to risk SoC design failure because of inadequate IP verification, which ultimately delays the project even more.
This article outlines how the latest formal metric-driven verification (MDV) methodology and technologies can eliminate integration uncertainty through the automatic generation of Accellera-defined coverage metrics, without the assistance of simulation. This formal MDV methodology measures not only the usual control coverage, but also observation coverage — a serious missing link in many other MDV approaches. The methodology is easily integrated into existing MDV flows or can be used stand-alone.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- Metric Driven Verification of Reconfigurable Memory Controller IPs Using UVM Methodology for Improved Verification Effectiveness and Reusability
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- How formal verification saves time in digital IP design
- Don't over-constrain in formal property verification (FPV) flows
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics