Designing An ARM-Based Multithreaded Audio/Visual/Motion Recording System: Part 1
By Edward L. Lamie, Express Logic
Oct 16 2006 (0:15 AM), Embedded.com
Although it is a generic case study design - not an actual implementation - a real time video/ audio/ motion (VAM) recording system highlights a number of key operating system features and services that must be considered in any embedded system design, including:
- application timers
- threads
- message queues
- mutexes
- memory byte pools
Our design provides the ability to record several events within each 24-second time frame, rather than just one. Application timers play a major role in providing this feature. We also used application timers to simulate interrupts that signify the occurrence of events, and we used one timer to display periodic system statistics.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- Designing An ARM-Based Multithreaded Video/Audio/ Motion Recording System - Part 2
- Designing with ARM Cortex-M based SoC Achitectures: Part 2 - Some typical applications
- Designing FPGA Based Reliable Systems Using Virtex-5 System Monitor
- An architecture for designing reusable embedded systems software, Part 1
Latest White Papers
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network